arXiv:1907.09895 [math.AP]AbstractReferencesReviewsResources
On the number of critical points of solutions of semilinear equations in $\mathbb{R}^2$
Francesca Gladiali, Massimo Grossi
Published 2019-07-23Version 1
In this paper we construct families of domains $\Omega_\varepsilon$ and solutions $u_\varepsilon$ of \[\begin{cases} -\Delta u_\varepsilon=1&\text{ in }\ \Omega_\varepsilon\\ u_\varepsilon=0&\text{ on }\ \partial\Omega_\varepsilon \end{cases}\] such that, for any integer $k\ge2$, $u_\varepsilon$ admits at least $k$ maxima points. The domain $\Omega_\varepsilon$ is "not far" to be convex in the sense that it is starshaped, the curvature of $\partial\Omega_\varepsilon$ changes sign $once$ and the minimum of the curvature of $\partial\Omega_\varepsilon$ goes to $0$ as $\varepsilon\to0$. Extensions to more general nonlinear elliptic problems will be provided.