arXiv Analytics

Sign in

arXiv:1907.08810 [math.NT]AbstractReferencesReviewsResources

Vanishing of the Brauer group of a del Pezzo surface of degree 4

Manar Riman

Published 2019-07-20Version 1

We explicitly construct a del Pezzo surface $X$ of degree 4 over a field $k$ such that $\operatorname{H}^1(k,\operatorname{Pic}\overline X)$ is isomorphic to $\mathbb{ZZ}/2\mathbb{Z}$ while $\operatorname{Br} X/\operatorname{Br} k$ is trivial. This proves that the algorithm to compute the Brauer group in [VAV] cannot be generalized in some cases.

Comments: 14 pages
Categories: math.NT, math.AG
Subjects: 14F22, 14G05
Related articles: Most relevant | Search more
arXiv:1306.3251 [math.NT] (Published 2013-06-13, updated 2014-10-08)
On Brauer groups of double covers of ruled surfaces
arXiv:1911.02684 [math.NT] (Published 2019-11-07)
Geometry of the del Pezzo surface y^2=x^3+Am^6+Bn^6
arXiv:1704.06232 [math.NT] (Published 2017-04-20)
Finiteness of Brauer groups of K3 surfaces in characteristic 2