arXiv:1906.08700 [math.AP]AbstractReferencesReviewsResources
On quasi-reversibility solutions to the Cauchy problem for the Laplace equation: regularity and error estimates
Laurent Bourgeois, Lucas Chesnel
Published 2019-06-20Version 1
We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One method to approximate the solution associated with compatible data consists in considering a family of regularized well-posed problems depending on a small parameter $\varepsilon>0$. In this context, in order to prove convergence of finite elements methods, it is necessary to get regularity results of the solutions to these regularized problems which hold uniformly in $\varepsilon$. In the present work, we obtain these results in smooth domains and in 2D polygonal geometries. In presence of corners, due the particular structure of the regularized problems, classical techniques \`a la Grisvard do not work and instead, we apply the Kondratiev approach. We describe the procedure in detail to keep track of the dependence in $\varepsilon$ in all the estimates. The main originality of this study lies in the fact that the limit problem is ill-posed in any framework.