arXiv Analytics

Sign in

arXiv:1906.07736 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Spectral statistics and many-body quantum chaos with conserved charge

Aaron J. Friedman, Amos Chan, Andrea De Luca, J. T. Chalker

Published 2019-06-18Version 1

We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via auxiliary spin-$1/2$ degrees of freedom. Averaging over an ensemble of realizations, we relate $K(t)$ to a partition function for the spins, given by a Trotterization of the spin-$1/2$ Heisenberg ferromagnet. Using Bethe Ansatz techniques, we extract the 'Thouless time' $t^{\vphantom{*}}_{\rm Th}$ demarcating the extent of random matrix behavior, and find scaling behavior governed by diffusion for $K(t)$ at $t\lesssim t^{\vphantom{*}}_{\rm Th}$. We also report numerical results for $K(t)$ in a generic Floquet spin model, which are consistent with these analytic predictions.

Related articles: Most relevant | Search more
Many-body quantum chaos and emergence of Ginibre ensemble
arXiv:2112.14762 [cond-mat.stat-mech] (Published 2021-12-29, updated 2022-05-09)
Onset of many-body quantum chaos due to breaking integrability
arXiv:2110.02976 [cond-mat.stat-mech] (Published 2021-10-06, updated 2022-03-24)
Universal Dephasing Mechanism of Many-Body Quantum Chaos