arXiv Analytics

Sign in

arXiv:1906.07018 [math-ph]AbstractReferencesReviewsResources

On the hidden symmetries of relativistic hydrogen atom

Volodimir Simulik

Published 2019-06-14Version 1

The Dirac equation in the external Coulomb field is proved to possess the symmetry determined by the 31 operators, which form the 31-dimensional algebra. Two different fermionic realizations of the SO(1,3) algebra of the Lorentz group are found. Two different bosonic realizations of this algebra are found as well. All generators of the above mentioned algebras commute with the operator of the Dirac equation in the external Coulomb field, and, therefore, determine the algebras of invariance of such Dirac equation. Hence, the spin s=(1,0) Bose symmetry of the Dirac equation for the free spinor field, proved recently in our papers, is extended here for the Dirac equation interacting with external Coulomb field. Relativistic hydrogen atom is modeling here by such Dirac equation. We are able to prove for the relativistic hydrogen atom both the fermionic and bosonic symmetries known from our papers about the case of non-interacting spinor field. New symmetry operators were found on the basis of new gamma matrix representations of the Clifford and SO(8) algebras, which were found recently in our papers. Hidden symmetries were found both in the canonical Foldy--Wouthuysen and in the covariant Dirac representations. The symmetry operators, which are simple and graceful in the Foldy--Wouthuysen representation, become non-local in the Dirac model.

Related articles: Most relevant | Search more
arXiv:math-ph/0508048 (Published 2005-08-24)
On the Convergence to a Statistical Equilibrium for the Dirac Equation
arXiv:2011.06401 [math-ph] (Published 2020-11-12)
Noncommutative integration of the Dirac equation in homogeneous spaces
arXiv:math-ph/0510097 (Published 2005-10-31)
Comment on `Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry' [J. Y. Guo and Z-Q. Sheng, Phys. Lett. A 338 (2005) 90]