arXiv Analytics

Sign in

arXiv:1906.05192 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Transport in topological insulator nanowires

Jens H. Bardarson, Roni Ilan

Published 2019-06-12Version 1

In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout we assume that the bulk is insulating and inert, and work with a surface-only theory. The essential transport properties are understood in terms of three special modes: in the normal state, half a flux quantum along the length of the wire induces a perfectly transmitted mode protected by an effective time reversal symmetry; a transverse magnetic field induces chiral modes at the sides of the wire, with different chiralities residing on different sides protecting them from backscattering; and, finally, Majorana zero modes are obtained at the ends of a wire in a proximity to a superconductor, when combined with a flux along the wire. Some parts of our discussion have a small overlap with the discussion in the review [Bardarson and Moore, Rep. Prog. Phys., 76, 056501, (2013)]. We do not aim to give a complete review of the published literature, instead the focus is mainly on our own and directly related work.

Comments: 22 pages, 8 figures; Chapter in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer"
Categories: cond-mat.mes-hall
Related articles: Most relevant | Search more
arXiv:2211.13849 [cond-mat.mes-hall] (Published 2022-11-25)
Optimizing Transport of Majorana Zero Modes in One-Dimensional Topological Superconductors
arXiv:2410.07373 [cond-mat.mes-hall] (Published 2024-10-09)
Effect of impurities and disorder on the braiding dynamics of Majorana zero modes
arXiv:1404.4058 [cond-mat.mes-hall] (Published 2014-04-15)
Majorana zero modes on a necklace