arXiv Analytics

Sign in

arXiv:1906.00764 [cs.LG]AbstractReferencesReviewsResources

Approximation capability of neural networks on spaces of probability measures and tree-structured domains

Tomas Pevny, Vojtech Kovarik

Published 2019-06-03Version 1

This paper extends the proof of density of neural networks in the space of continuous (or even measurable) functions on Euclidean spaces to functions on compact sets of probability measures. By doing so the work parallels a more then a decade old results on mean-map embedding of probability measures in reproducing kernel Hilbert spaces. The work has wide practical consequences for multi-instance learning, where it theoretically justifies some recently proposed constructions. The result is then extended to Cartesian products, yielding universal approximation theorem for tree-structured domains, which naturally occur in data-exchange formats like JSON, XML, YAML, AVRO, and ProtoBuffer. This has important practical implications, as it enables to automatically create an architecture of neural networks for processing structured data (AutoML paradigms), as demonstrated by an accompanied library for JSON format.

Related articles: Most relevant | Search more
arXiv:1805.07405 [cs.LG] (Published 2018-05-18)
Processing of missing data by neural networks
arXiv:1904.01399 [cs.LG] (Published 2019-04-02)
On Geometric Structure of Activation Spaces in Neural Networks
arXiv:1811.12273 [cs.LG] (Published 2018-11-29)
On the Transferability of Representations in Neural Networks Between Datasets and Tasks