arXiv:1905.12455 [math.FA]AbstractReferencesReviewsResources
A $ΞΎ$-weak Grothendieck compactness principle
Published 2019-05-29Version 1
For $0\leqslant \xi\leqslant \omega_1$, we define the notion of $\xi$-weakly precompact and $\xi$-weakly compact sets in Banach spaces and prove that a set is $\xi$-weakly precompact if and only if its weak closure is $\xi$-weakly compact. We prove a quantified version of Grothendieck's compactness principle and the characterization of Schur spaces obtained by Dowling et al. For $0\leqslant \xi\leqslant \omega_1$, we prove that a Banach space $X$ has the $\xi$-Schur property if and only if every $\xi$-weakly compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null) sequence.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:math/0610421 [math.FA] (Published 2006-10-12)
Smooth norms and approximation in Banach spaces of the type C(K)
arXiv:math/9508207 [math.FA] (Published 1995-08-01)
Vector-valued Walsh-Paley martingales and geometry of Banach spaces
arXiv:math/0412171 [math.FA] (Published 2004-12-08)
Embedding $\ell_{\infty}$ into the space of all Operators on Certain Banach Spaces