arXiv:1905.11106 [math.NA]AbstractReferencesReviewsResources
A note on the singular value decomposition of (skew-)involutory and (skew-)coninvolutory matrices
Heike Faßbender, Martin Halwaß
Published 2019-05-27Version 1
The singular values $\sigma >1$ of an $n \times n$ involutory matrix $A$ appear in pairs $(\sigma, \frac{1}{\sigma}),$ while the singular values $\sigma = 1$ may appear in pairs $(1,1)$ or by themselves. The left and right singular vectors of pairs of singular values are closely connected. This link is used to reformulate the singular value decomposition (SVD) of an involutory matrix as an eigendecomposition. This displays an interesting relation between the singular values of an involutory matrix and its eigenvalues. Similar observations hold for the SVD, the singular values and the coneigenvalues of (skew-)coninvolutory matrices.
Categories: math.NA
Related articles: Most relevant | Search more
arXiv:2309.06201 [math.NA] (Published 2023-09-12)
High Order Numerical Methods To Approximate The Singular Value Decomposition
arXiv:2403.05214 [math.NA] (Published 2024-03-08)
A note on the singular value decomposition of idempotent and involutory matrices
arXiv:1804.09838 [math.NA] (Published 2018-04-26)
Singular value decomposition of complexes