arXiv Analytics

Sign in

arXiv:1905.08986 [math.PR]AbstractReferencesReviewsResources

Moderate deviations and extinction of an epidemic

Etienne Pardoux

Published 2019-05-22Version 1

Consider an epidemic model with a constant flux of susceptibles, in a situation where the corresponding deterministic epidemic model has a unique stable endemic equilibrium. For the associated stochastic model, whose law of large numbers limit is the deterministic model, the disease free equilibrium is an absorbing state, which is reached soon or later by the process. However, for a large population size, i.e. when the stochastic model is close to its deterministic limit, the time needed for the stochastic perturbations to stop the epidemic may be enormous. In this paper, we discuss how the Central Limit Theorem, Moderate and Large Deviations allow us to give estimates of the extinction time of the epidemic, depending upon the size of the population.

Related articles: Most relevant | Search more
arXiv:1212.1379 [math.PR] (Published 2012-12-06, updated 2013-06-09)
Optimal On-Line Selection of an Alternating Subsequence: A Central Limit Theorem
arXiv:math/0702358 [math.PR] (Published 2007-02-13)
Law of Large Numbers and Central Limit Theorem under Nonlinear Expectations
arXiv:math/0702481 [math.PR] (Published 2007-02-16, updated 2007-05-04)
Central Limit Theorem for a Class of Relativistic Diffusions