arXiv Analytics

Sign in

arXiv:1905.07983 [math.PR]AbstractReferencesReviewsResources

Limit theorems for Jacobi ensembles with large parameters

Kilian Hermann, Michael Voit

Published 2019-05-20Version 1

Consider Jacobi random matrix ensembles with the distributions $$c_{k_1,k_2,k_3}\prod_{1\leq i< j \leq N}\left(x_j-x_i\right)^{k_3}\prod_{i=1}^N \left(1-x_i\right)^{\frac{k_1+k_2}{2}-\frac{1}{2}}\left(1+x_i\right)^{\frac{k_2}{2}-\frac{1}{2}} dx$$ of the eigenvalues on the alcoves $$A:=\{x\in\mathbb R^N| \> -1\leq x_1\le ...\le x_N\leq 1\}.$$ For $(k_1,k_2,k_3)=\kappa\cdot (a,b,1)$ with $a,b>0$ fixed, we derive a central limit theorem for the distributions above for $\kappa\to\infty$. The drift and the inverse of the limit covariance matrix are expressed in terms of the zeros of classical Jacobi polynomials. We also rewrite the CLT in trigonometric form and determine the eigenvalues and eigenvectors of the limit covariance matrices. These results are related to corresponding limits for $\beta$-Hermite and $\beta$-Laguerre ensembles for $\beta\to\infty$ by Dumitriu and Edelman and by Voit.

Related articles: Most relevant | Search more
arXiv:1205.0303 [math.PR] (Published 2012-05-02, updated 2014-05-10)
A central limit theorem for the zeroes of the zeta function
arXiv:1304.6744 [math.PR] (Published 2013-04-24, updated 2013-10-19)
Central Limit Theorem for Linear Statistics of Eigenvalues of Band Random Matrices
arXiv:math/0509682 [math.PR] (Published 2005-09-29, updated 2006-09-25)
Central limit theorem for stationary linear processes