arXiv:1905.05620 [math.RT]AbstractReferencesReviewsResources
Embedding Deligne's category $\mathrm{Rep}(S_t)$ in the Heisenberg category
Samuel Nyobe Likeng, Alistair Savage, appendix with Christopher Ryba
Published 2019-05-14Version 1
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category $\mathrm{Rep}(S_t)$, to the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.
Comments: 22 pages
Related articles: Most relevant | Search more
arXiv:1709.06589 [math.RT] (Published 2017-09-19)
On the definition of Heisenberg category
Grothendieck rings of basic classical Lie superalgebras
arXiv:2405.09846 [math.RT] (Published 2024-05-16)
Delta Operators on Almost Symmetric Functions