arXiv Analytics

Sign in

arXiv:1905.01279 [math.AG]AbstractReferencesReviewsResources

Two moduli spaces of Calabi-Yau type

Ignacio Barros, Scott Mullane

Published 2019-05-03Version 1

We show $\overline{\mathcal{M}}_{10,10}$ and $\mathcal{F}_{11,9}$ have Kodaira dimension zero. Our method utilised the construction of a number of curves via nodal Lefschetz pencils on blown-up $K3$ surfaces which further yield that any effective divisor in $\overline{\mathcal{M}}_{g}$ with slope $<6+(12-\delta)/(g+1)$ must contain the locus of curves that are the normalization of a $\delta$-nodal curve lying on a $K3$ surface of genus $g+\delta$.

Related articles: Most relevant | Search more
arXiv:1907.08670 [math.AG] (Published 2019-07-19)
The integral Hodge conjecture for 3-folds of Kodaira dimension zero
arXiv:math/0404285 [math.AG] (Published 2004-04-16, updated 2004-10-26)
Divisors on the moduli spaces of stable maps to flag varieties and reconstruction
arXiv:1109.5632 [math.AG] (Published 2011-09-26, updated 2013-02-25)
Semi-algebraic horizontal subvarieties of Calabi-Yau type