arXiv:1905.00533 [math.NT]AbstractReferencesReviewsResources
Cardinality of a floor function
Published 2019-05-02Version 1
Fix a positive integer X. We quantify the cardinality of the set $\{\lfloor X/n \rfloor\}_{n=1}^X$. We discuss restricting the set to those elements that are prime, semiprime or similar.
Comments: 9 pages. Comments welcome
Categories: math.NT
Related articles: Most relevant | Search more
On representations of positive integers by $(a+c)^{1/3}x + (b+d)y$, $(a+c)x + \bigl(k(b+d) \bigr)^{1/3} y$, and $\bigl(k(a+c) \bigr)^{1/3} x + l(b+d) y$
arXiv:1309.0479 [math.NT] (Published 2013-09-02)
On the Interval [n,2n]: Primes, Composites and Perfect Powers
On general sums involving the floor function with applications to $k$-free numbers