arXiv:1904.13040 [math.RT]AbstractReferencesReviewsResources
Jantzen filtration of Weyl modules, product of Young symmetrizers and denominator of Young's seminormal basis
Ming Fang, Kay Jin Lim, Kai Meng Tan
Published 2019-04-30Version 1
Let $G$ be a connected reductive algebraic group over an algebraically closed field of characteristic $p>0$, $\Delta(\lambda)$ denote the Weyl module of $G$ of highest weight $\lambda$ and $\iota_{\lambda,\mu}:\Delta(\lambda+\mu)\to \Delta(\lambda)\otimes\Delta(\mu)$ be the canonical $G$-morphism. We study the split condition for $\iota_{\lambda,\mu}$ over $\mathbb{Z}_{(p)}$, and apply this as an approach to compare the Jantzen filtrations of the Weyl modules $\Delta(\lambda)$ and $\Delta(\lambda+\mu)$. In the case when $G$ is of type $A$, we show that the split condition is closely related to the product of certain Young symmetrizers and is further characterized by the denominator of a certain Young's seminormal basis vector in certain cases. We obtain explicit formulas for the split condition in some cases.