arXiv Analytics

Sign in

arXiv:1904.12160 [math.PR]AbstractReferencesReviewsResources

On the Feynman-Kac Formula

B Rajeev

Published 2019-04-27Version 1

In this article, given $y :[0,\eta)\rightarrow H$ a continuous map into a Hilbert space $H$ we study the equation \[\hat y(t) = e^{\int_0^tc(s,\hat y)}y(t)\] where $c(s,\cdot)$ is a given `potential' on $C([0,\eta),H)$. Applying the transformation $y \rightarrow \hat y$ to the solutions of the SPDE and PDE underlying a diffusion, we study the Feynman-Kac formula.

Related articles: Most relevant | Search more
arXiv:2008.06308 [math.PR] (Published 2020-08-14)
Time regularity of Lévy-type evolution in Hilbert spaces and of some $α$-stable processes
arXiv:0907.1431 [math.PR] (Published 2009-07-09)
Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces
arXiv:1201.6614 [math.PR] (Published 2012-01-31)
Backward Stochastic Differential Equations and Feynman-Kac Formula for Multidimensional Lévy Processes, with Applications in Finance