arXiv:1904.10911 [math.CO]AbstractReferencesReviewsResources
The ring $\mathrm{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four
Published 2019-04-24Version 1
We show that the direct sum of an odd number of matrices $$C=\left(\begin{array}{cccc} 0&0&0&1\\ 1&0&0&0\\ 0&1&0&0\\ 0&0&1&1 \end{array}\right)$$ cannot be a sum $P+Q$ of matrices over $\mathbb{F}_2$ satisfying $P^2=P$ and $Q^3=O$.
Related articles: Most relevant | Search more
On equidissection of balanced polygons
arXiv:1602.01617 [math.CO] (Published 2016-02-04)
The intricate labyrinth of Collatz sequences
arXiv:1708.04488 [math.CO] (Published 2017-08-15)
Edge-magic labelings for constellations and armies of caterpillars