arXiv:1904.10244 [math.CO]AbstractReferencesReviewsResources
Maximal independent sets and maximal matchings in series-parallel and related graph classes
Michael Drmota, Lander Ramos, Clément Requilé, Juanjo Rué
Published 2019-04-23Version 1
The goal of this paper is to obtain quantitative results on the number and on the size of maximal independent sets and maximal matchings in several block-stable graph classes that satisfy a proper sub-criticality condition. In particular we cover trees, cacti graphs and series-parallel graphs. The proof methods are based on a generating function approach and a proper singularity analysis of solutions of implicit systems of functional equations in several variables. As a byproduct, this method extends previous results of Meir and Moon for trees [Meir, Moon: On maximal independent sets of nodes in trees, Journal of Graph Theory 1988].