arXiv Analytics

Sign in

arXiv:1904.07288 [math.DG]AbstractReferencesReviewsResources

Minimal codimension one foliation of a symmetric space by Damek-Ricci spaces

Gerhard Knieper, John R. Parker, Norbert Peyerimhoff

Published 2019-04-15Version 1

In this article we consider solvable hypersurfaces of the form $N \exp(\R H)$ with induced metrics in the symmetric space $M = SL(3,\C)/SU(3)$, where $H$ a suitable unit length vector in the subgroup $A$ of the Iwasawa decomposition $SL(3,\C) = NAK$. Since $M$ is rank $2$, $A$ is $2$-dimensional and we can parametrize these hypersurfaces via an angle $\alpha \in [0,\pi/2]$ determining the direction of $H$. We show that one of the hypersurfaces (corresponding to $\alpha = 0$) is minimally embedded and isometric to the non-symmetric $7$-dimensional Damek-Ricci space. We also provide an explicit formula for the Ricci curvature of these hypersurfaces and show that all hypersurfaces for $\alpha \in (0,\frac{\pi}{2}]$ admit planes of both negative and positive sectional curvature. Moreover, the symmetric space $M$ admits a minimal foliation with all leaves isometric to the non-symmetric $7$-dimensional Damek-Ricci space.

Related articles: Most relevant | Search more
arXiv:1011.0902 [math.DG] (Published 2010-11-03)
The *-Ricci tensor for hypersurfaces in CP^n and CH^n
arXiv:1712.04545 [math.DG] (Published 2017-12-12)
Macroscopic stability and simplicial norms of hypersurfaces
arXiv:1107.4260 [math.DG] (Published 2011-07-21, updated 2012-02-22)
Weyl-Schouten Theorem for symmetric spaces