arXiv Analytics

Sign in

arXiv:1904.01779 [math.AP]AbstractReferencesReviewsResources

Remarks on the golobal large solution to the three-dimensional incompressible Navier-Stokes equations

Jinlu Li, Yanghai Yu, Zhaoyang Yin

Published 2019-04-03Version 1

In this paper, we derive a new smallness hypothesis of initial data for the three-dimensional incompressible Navier-Stokes equations. That is, we prove that there exist two positive constants $c_0,C_0$ such that if \begin{equation*} \|u_0^1+u^2_0,u^3_0\|_{\dot{B}_{p,1}^{-1+\frac{3}{p}}} \|u^1_0,u^2_0\|_{\dot{B}_{p,1}^{-1+\frac{3}{p}}} \exp\{C_0 (\|u_0\|^{2}_{\dot{B}_{\infty,2}^{-1}}+\|u_0\|_{\dot{B}_{\infty,\infty}^{-1}})\} \leq c_0, \end{equation*} then \eqref{NS} has a unique global solution. As an application we construct two family of smooth solutions to the Navier-Stokes equations whose $\dot{B}^{-1}_{\infty,\infty}(\R^3)$ norm can be arbitrarily large.

Related articles: Most relevant | Search more
arXiv:math/0505434 [math.AP] (Published 2005-05-20, updated 2006-03-21)
Quasi-geostrophic equations with initial data in Banach spaces of local measures
arXiv:1210.3429 [math.AP] (Published 2012-10-12)
Global Well-posedness of the Parabolic-parabolic Keller-Segel Model in $L^{1}(R^2)\times{L}^{\infty}(R^2)$ and $H^1_b(R^2)\times{H}^1(R^2)$
arXiv:0809.3837 [math.AP] (Published 2008-09-23)
Generalized Solutions of a Nonlinear Parabolic Equation with Generalized Functions as Initial Data