arXiv:1904.01779 [math.AP]AbstractReferencesReviewsResources
Remarks on the golobal large solution to the three-dimensional incompressible Navier-Stokes equations
Jinlu Li, Yanghai Yu, Zhaoyang Yin
Published 2019-04-03Version 1
In this paper, we derive a new smallness hypothesis of initial data for the three-dimensional incompressible Navier-Stokes equations. That is, we prove that there exist two positive constants $c_0,C_0$ such that if \begin{equation*} \|u_0^1+u^2_0,u^3_0\|_{\dot{B}_{p,1}^{-1+\frac{3}{p}}} \|u^1_0,u^2_0\|_{\dot{B}_{p,1}^{-1+\frac{3}{p}}} \exp\{C_0 (\|u_0\|^{2}_{\dot{B}_{\infty,2}^{-1}}+\|u_0\|_{\dot{B}_{\infty,\infty}^{-1}})\} \leq c_0, \end{equation*} then \eqref{NS} has a unique global solution. As an application we construct two family of smooth solutions to the Navier-Stokes equations whose $\dot{B}^{-1}_{\infty,\infty}(\R^3)$ norm can be arbitrarily large.