arXiv:1903.11754 [math.PR]AbstractReferencesReviewsResources
Euler-Maruyama Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients
Published 2019-03-28Version 1
In this paper we study a type of stochastic McKean-Vlasov equations with non-Lipschitz coefficients. Firstly, by an Euler-Maruyama approximation existence of its weak solutions is proved. And then we observe pathwise uniqueness of its weak solutions. Finally, it is shown that the Euler-Maruyama approximation has an optimal strong convergence rate.
Related articles: Most relevant | Search more
arXiv:2010.15330 [math.PR] (Published 2020-10-29)
Weak solutions of McKean-Vlasov SDEs with supercritical drifts
arXiv:2106.12080 [math.PR] (Published 2021-06-22)
The stability and path-independence of additive functionals for multivalued McKean-Vlasov SDEs with non-Lipschitz coefficients
arXiv:1905.07883 [math.PR] (Published 2019-05-20)
Stability for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients