arXiv:1903.06943 [math.DS]AbstractReferencesReviewsResources
Transfer operators and atomic decomposition
Alexander Arbieto, Daniel Smania
Published 2019-03-16Version 1
We use the method of atomic decomposition and a new family of Banach spaces to study the action of transfer operators associated to piecewise-defined maps. It turns out that these transfer operators are quasi-compact even when the associated potential, the dynamics and the underlying phase space have very low regularity. In particular it is often possible to obtain exponential decay of correlations, the Central Limit Theorem and almost sure invariance principle for fairly general observables, including unbounded ones.
Comments: 46 pages, 2 figures
Related articles: Most relevant | Search more
arXiv:1903.06976 [math.DS] (Published 2019-03-16)
Transfer operators, atomic decomposition and the Bestiary
Central limit theorem and stable laws for intermittent maps
arXiv:math/0503693 [math.DS] (Published 2005-03-29)
Almost Sure Invariance Principle For Nonuniformly Hyperbolic Systems