arXiv:1903.02031 [math.NT]AbstractReferencesReviewsResources
Test Vectors for Nonarchimedean Godement-Jacquet Zeta Integrals
Published 2019-03-05Version 1
Given an induced representation of Langlands type $(\pi,V)$ of $\mathrm{GL}_n(F)$ with $F$ nonarchimedean, we show that there exist explicit choices of matrix coefficient $\beta$ and Schwartz-Bruhat function $\Phi$ for which the Godement-Jacquet zeta integral $Z(s,\beta,\Phi)$ attains the $L$-function $L(s,\pi)$.
Comments: 6 pages. Comments welcome
Related articles:
arXiv:1005.0724 [math.NT] (Published 2010-05-05)
Test vectors for trilinear forms when at least one representation is not supercuspidal
arXiv:math/0503090 [math.NT] (Published 2005-03-05)
Conductors and newforms for U(1,1)