arXiv Analytics

Sign in

arXiv:1902.08800 [math.AP]AbstractReferencesReviewsResources

Nonexistence result for a semilinear elliptic problem

Salvador López-Martínez, Alexis Molino

Published 2019-02-23Version 1

In this paper we prove the nonexistence of nontrivial solution to \begin{equation*} \begin{cases} -\Delta u =f(u) &\text{in }\Omega, \\ u=0 &\text{on } \partial \Omega, \end{cases} \end{equation*} being $\Omega \subset \mathbb{R}^N$ ($N\geq 2$) a bounded domain with boundary smooth and $f$ Lispchitz with non-positive primitive.

Related articles: Most relevant | Search more
arXiv:1209.3988 [math.AP] (Published 2012-09-18)
Desingularization of vortex rings and shallow water vortices by semilinear elliptic problem
arXiv:1707.07898 [math.AP] (Published 2017-07-25)
Ground state solutions for a semilinear elliptic problem with critical-subcritical growth
arXiv:math/0211342 [math.AP] (Published 2002-11-21)
Bifurcation results for semilinear elliptic problems in R^N