arXiv Analytics

Sign in

arXiv:1902.03361 [cs.CV]AbstractReferencesReviewsResources

Image Decomposition and Classification through a Generative Model

Houpu Yao, Malcolm Regan, Yezhou Yang, Yi Ren

Published 2019-02-09Version 1

We demonstrate in this paper that a generative model can be designed to perform classification tasks under challenging settings, including adversarial attacks and input distribution shifts. Specifically, we propose a conditional variational autoencoder that learns both the decomposition of inputs and the distributions of the resulting components. During test, we jointly optimize the latent variables of the generator and the relaxed component labels to find the best match between the given input and the output of the generator. The model demonstrates promising performance at recognizing overlapping components from the multiMNIST dataset, and novel component combinations from a traffic sign dataset. Experiments also show that the proposed model achieves high robustness on MNIST and NORB datasets, in particular for high-strength gradient attacks and non-gradient attacks.

Related articles: Most relevant | Search more
arXiv:2111.15264 [cs.CV] (Published 2021-11-30, updated 2022-02-04)
EdiBERT, a generative model for image editing
arXiv:1508.04035 [cs.CV] (Published 2015-08-17)
A Generative Model for Multi-Dialect Representation
arXiv:1910.07169 [cs.CV] (Published 2019-10-16)
Generative Modeling for Small-Data Object Detection