arXiv:1902.00096 [math.CA]AbstractReferencesReviewsResources
A maximal function for families of Hilbert transforms along homogeneous curves
Shaoming Guo, Joris Roos, Andreas Seeger, Po-Lam Yung
Published 2019-01-31Version 1
Let $H^{(u)}$ be the Hilbert transform along the parabola $(t, ut^2)$ where $u\in \mathbb R$. For a set $U$ of positive numbers consider the maximal function $\mathcal{H}^U \!f= \sup\{|H^{(u)}\! f|: u\in U\}$. We obtain an (essentially) optimal result for the $L^p$ operator norm of $\mathcal{H}^U$ when $2<p<\infty$. The results are proved for families of Hilbert transforms along more general nonflat homogeneous curves.
Comments: 43 pages, submitted
Categories: math.CA
Related articles: Most relevant | Search more
The Two Weight Inequality for the Hilbert Transform: A Primer
arXiv:math/0412081 [math.CA] (Published 2004-12-03)
An example on the maximal function associated to a nondoubling measure
arXiv:1011.1767 [math.CA] (Published 2010-11-08)
The Hilbert transform does not map L^1(Mw) to L^{1,\infty}(w)