arXiv:1901.08423 [math.NT]AbstractReferencesReviewsResources
Sharp upper bounds for fractional moments of the Riemann zeta function
Winston Heap, Maksym Radziwiłł, Kannan Soundararajan
Published 2019-01-24Version 1
We establish sharp upper bounds for the $2k$th moment of the Riemann zeta function on the critical line, for all real $0 \leqslant k \leqslant 2$. This improves on earlier work of Ramachandra, Heath-Brown and Bettin-Chandee-Radziwi\l\l
Comments: 10 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:0707.2406 [math.NT] (Published 2007-07-16)
Other representations of the Riemann Zeta function and an additional reformulation of the Riemann Hypothesis
arXiv:1312.1232 [math.NT] (Published 2013-12-04)
Self-reciprocal functions, powers of the Riemann zeta function and modular-type transformations
arXiv:1011.3997 [math.NT] (Published 2010-11-17)
On the Gram's Law in the Theory of Riemann Zeta Function