arXiv Analytics

Sign in

arXiv:1901.06751 [math.NT]AbstractReferencesReviewsResources

The Chebotarev density theorem for function fields - incomplete intervals

Pär Kurlberg, Lior Rosenzweig

Published 2019-01-20Version 1

We prove a Polya-Vinogradov type variation of the the Chebotarev density theorem for function fields over finite fields valid for "incomplete intervals" $I \subset \mathbb{F}_p$, provided $(p^{1/2}\log p)/|I| = o(1)$. Applications include density results for irreducible trinomials in $\mathbb{F}_p[x]$, i.e. the number of irreducible polynomials in the set $\{ f(x) = x^{d} + a_{1} x + a_{0} \in \mathbb{F}_p[x] \}_{a_{0} \in I_{0}, a_{1}\in I_{1}}$ is $\sim |I_{0}|\cdot |I_{1}|/d$ provided $|I_{0}| > p^{1/2+\epsilon}$, $|I_{1}| > p^{\epsilon}$, or $|I_{1}| > p^{1/2+\epsilon}$, $|I_{0}| > p^{\epsilon}$, and similarly when $x^{d}$ is replaced by any monic degree $d$ polynomial in $\mathbb{F}_p[x]$. Under the above assumptions we can also determine the distribution of factorization types, and find it to be consistent with the distribution of cycle types of permutations in the symmetric group $S_{d}$.

Related articles: Most relevant | Search more
arXiv:2212.00294 [math.NT] (Published 2022-12-01)
A Chebotarev Density Theorem over Local Fields
arXiv:math/0401356 [math.NT] (Published 2004-01-26)
Common divisors of a^n-1 and b^n-1 over function fields
arXiv:1311.2018 [math.NT] (Published 2013-11-08)
Bounds for the Euclidean minima of function fields