arXiv:1901.02742 [math.PR]AbstractReferencesReviewsResources
Explicit speed of convergence of the stochastic billiard in a convex set
Published 2019-01-09Version 1
In this paper, we are interested in the speed of convergence of the stochastic billiard evolving in a convex set K. This process can be described as follows: a particle moves at unit speed inside the set K until it hits the boundary, and is randomly reflected, independently of its position and previous velocity. We focus on convex sets in R 2 with a curvature bounded from above and below. We give an explicit coupling for both the continuous-time process and the embedded Markov chain of hitting points on the boundary, which leads to an explicit speed of convergence to equilibrium.
Categories: math.PR
Related articles: Most relevant | Search more
The harmonic explorer and its convergence to SLE(4)
Convergence in law for the branching random walk seen from its tip
Convergence in total variation on Wiener chaos