arXiv:1812.07863 [math.NT]AbstractReferencesReviewsResources
Mean values of divisors of forms $n^2+Nm^2$
Published 2018-12-19Version 1
Let $N$ be any fixed positive integer and define \begin{align*} S_N(x)=\sum_{m, n \leq x}d(n^2+Nm^2), \end{align*} where $d(n)$ is the divisor function. We evaluate asymptotically $S_N(x)$ for several $N$, extending earlier works of Gafurov and Yu on the case $N=1$.
Comments: 18 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1810.04104 [math.NT] (Published 2018-10-09)
Mean values and moments of arithmetic functions over number fields
arXiv:math/9912107 [math.NT] (Published 1999-12-13)
Mean values of L-functions and symmetry
A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function $σ_x(n)$