arXiv:1812.04875 [math.AP]AbstractReferencesReviewsResources
Existence of positive solution of the Choquard equation $-Δ u+a(x)u=(I_μ*|u|^{2^{*}_μ})|u|^{2^{*}_μ-2}u$ in $\mathbb{R}^N$
Claudianor O. Alves, Giovany M. Figueiredo
Published 2018-12-12Version 1
In this paper we show existence of a positive solution to the problem $$ \left\{ \begin{array}{rcl} -\Delta u+a(x)u=(I_{\mu}*|u|^{2^{*}_{\mu}})|u|^{2^{*}_{\mu}-2}u,\\ u>0 \ \ \mbox{in} \ \ \mathbb{R}^{N},\\ u \in D^{1,2}(\mathbb{R}^{N}), \end{array} \right.\leqno{(P)} $$ where $I_\mu=\frac{1}{|x|^\mu}$ is the Riesz potential, $0<\mu<\min\{N,4\}$ and $2^{*}_{\mu}=\frac{(2N-\mu)}{N-2}$ with $N\geq 3$. In order to prove the main result, we used variational methods combined with a splitting theorem.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1512.03181 [math.AP] (Published 2015-12-10)
Classification of isolated singularities of positive solutions for Choquard equations
arXiv:1304.1907 [math.AP] (Published 2013-04-06)
Positive solutions to a supercritical elliptic problem which concentrate along a thin spherical hole
arXiv:1606.02158 [math.AP] (Published 2016-06-07)
A guide to the Choquard equation