arXiv Analytics

Sign in

arXiv:1812.01405 [math.NA]AbstractReferencesReviewsResources

Rational Krylov methods for functions of matrices with applications to fractional partial differential equations

Lidia Aceto, Daniele Bertaccini, Fabio Durastante, Paolo Novati

Published 2018-12-04Version 1

In this paper, we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The results of the numerical experiments we have carried out on some fractional models confirm that the proposed approach is promising.

Related articles: Most relevant | Search more
arXiv:math/0703410 [math.NA] (Published 2007-03-14)
A Convergence Result for Asynchronous Algorithms and Applications
arXiv:math/0610736 [math.NA] (Published 2006-10-24)
Some Refinements of Discrete Jensen's Inequality and Some of Its Applications
arXiv:1205.3157 [math.NA] (Published 2012-05-12)
Multi-Adaptive Galerkin Methods for ODEs II: Implementation and Applications