arXiv Analytics

Sign in

arXiv:1812.00164 [math.FA]AbstractReferencesReviewsResources

Parallelism in Hilbert $K(\mathcal{H})$-modules

M. Mohammadi Gohari, M. Amyari

Published 2018-12-01Version 1

Let $(\mathcal{H}, [\cdot, \cdot ])$ be a Hilbert space and $K(\mathcal{H})$ be the $C^*$-algebra of compact operators on $\mathcal{H}$. In this paper, we present some characterizations of the norm-parallelism for elements of a Hilbert $K(\mathcal{H})$-module $\mathcal{E}$ by employing the minimal projections on $\mathcal{H}$. Let $T,S\in \mathcal{L(\mathcal{E})}$. We show that $T \| S$ if and only if there exists a sequence of basic vectors $\{x_n\}^{\xi_n}$ in $\mathcal{E}$ such that $\lim_n [\langle Tx_n, Sx_n \rangle \xi_n, \xi_n ] = \lambda\| T\| \| S\|$ for some $\lambda \in \mathbb{T}$. In addition, we give some equivalence assertions about the norm-parallelism of "compact" operators on a Hilbert $C^*$-module.

Related articles: Most relevant | Search more
arXiv:1812.00167 [math.FA] (Published 2018-12-01)
The operator--valued parallelism and norm-parallelism in matrices
arXiv:1510.00114 [math.FA] (Published 2015-10-01)
Some results on singular value inequalities of compact operators in Hilbert space
arXiv:2209.05397 [math.FA] (Published 2022-09-08)
Non-linear traces on the algebra of compact operators and majorization