arXiv:1811.08251 [math.NT]AbstractReferencesReviewsResources
The maximal discrete extension of $SL_2(\mathcal{\scriptstyle{O}}_K)$ for an imaginary-quadratic number field $K$
Aloys Krieg, Joana Rodriguez, Annalena Wernz
Published 2018-11-20, updated 2018-12-21Version 2
Let $\mathcal{\scriptstyle{O}}_K$ be the ring of integers of an imaginary quadratic number field $K$. In this paper we give a new description of the maximal discrete extension of the group $SL_2(\mathcal{\scriptstyle{O}}_K)$ over the ring of integers $\mathcal{\scriptstyle{O}}_K$ of an imaginary quadratic number field $K$ inside $SL_2(\mathbb{C})$, which uses generalized Atkin-Lehner involutions. Moreover we find a natural characterization of this group in $SO(1,3)$.
Related articles: Most relevant | Search more
arXiv:1910.12466 [math.NT] (Published 2019-10-28)
The maximal discrete extension of the Hermitian modular group
arXiv:2407.04380 [math.NT] (Published 2024-07-05)
Gaps in the complex Farey sequence of an imaginary quadratic number field
arXiv:2401.09634 [math.NT] (Published 2024-01-17)
Explicit formula in a imaginary quadratic number field