arXiv:1811.05246 [math.NT]AbstractReferencesReviewsResources
On eigenvalues of the kernel ${1\over 2}+\lfloor {1\over xy}\rfloor - {1\over xy}$ ($0<x,y\leq 1$)
Published 2018-11-13Version 1
We show that the kernel $K(x,y)={1\over 2}+\lfloor {1\over xy}\rfloor -{1\over xy}$ ($0<x,y\leq 1$) has infinitely many positive eigenvalues and infinitely many negative eigenvalues. Our interest in this kernel is motivated by the appearance of the quadratic form $\sum_{m,n\leq N} K\bigl( {m\over N} , {n\over N}\bigr) \mu(m)\mu(n)$ in an indentity involving the Mertens function.
Comments: 8 Pages, Plain Tex, submitted to the Journal de Th\'{e}orie des Nombres de Bordeaux
Categories: math.NT
Related articles: Most relevant | Search more
Summation formulae for quadrics
arXiv:1711.00411 [math.NT] (Published 2017-11-01)
Values of quadratic forms on quasicrystals and a related problem
arXiv:2306.07108 [math.NT] (Published 2023-06-12)
Cliques in Representation Graphs of Quadratic Forms