arXiv:1811.04417 [math.AP]AbstractReferencesReviewsResources
Perturbations of nonlinear eigenvalue problems
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš
Published 2018-11-11Version 1
We consider perturbations of nonlinear eigenvalue problems driven by a nonhomogeneous differential operator plus an indefinite potential. We consider both sublinear and superlinear perturbations and we determine how the set of positive solutions changes as the real parameter $\lambda$ varies. We also show that there exists a minimal positive solution $\overline{u}_\lambda$ and determine the monotonicity and continuity properties of the map $\lambda\mapsto\overline{u}_\lambda$. Special attention is given to the particular case of the $p$-Laplacian.
Journal: Commun. Pure Appl. Anal. 18:3 (2019), 1403-1431
DOI: 10.3934/cpaa.2019068
Categories: math.AP
Keywords: nonlinear eigenvalue problems driven, nonhomogeneous differential operator plus, indefinite potential, special attention, superlinear perturbations
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1704.08001 [math.AP] (Published 2017-04-26)
Multiple solutions for resonant problems of the Robin $p$-Laplacian plus an indefinite potential
arXiv:1905.11120 [math.AP] (Published 2019-05-27)
On the Schrödinger-Poisson system with indefinite potential and $3$-sublinear nonlinearity
arXiv:2010.03846 [math.AP] (Published 2020-10-08)
Positive solutions for the Robin $p$-Laplacian plus an indefinite potential