arXiv Analytics

Sign in

arXiv:1811.02115 [math.GR]AbstractReferencesReviewsResources

Examples of defining groups by finite automata

Victoriia Korchemna

Published 2018-11-03Version 1

We construct the groups $<A,B,C \;| \, A^2,B^2,C^2,(ABC)^2>$ and $<A,B \;| \, A^2,B^4,(AB)^4>$, using 3-state automata over the alphabets $\{1,2,3\}$ and $\{1,2,3,4\}$. In addition, we show, how to define direct powers of $G$ by automaton (when for $G$ it's given), keeping the alphabet.

Comments: 13 pages, 6 figures
Categories: math.GR
Subjects: 20F55, 20E08
Related articles: Most relevant | Search more
arXiv:1112.5709 [math.GR] (Published 2011-12-24)
Finite automata for Schreier graphs of virtually free groups
arXiv:1812.00716 [math.GR] (Published 2018-12-03)
Automata system in finitelly generated groups
arXiv:1511.01630 [math.GR] (Published 2015-11-05)
Cayley automatic representations of wreath products