arXiv Analytics

Sign in

arXiv:1811.00990 [math.FA]AbstractReferencesReviewsResources

A Centroid for Sections of a Cube in a Function Space, with application to Colorimetry

Glenn Davis

Published 2018-11-02Version 1

The definition of the centroid in finite dimensions does not apply in a function space because of the lack of a translation invariant measure. Another approach, suggested by Nik Weaver, is to use a suitable collection of finite-dimensional subspaces. For a specific collection of subspaces of $L^1[0,1]$, this approach is shown to be successful when the subset is the intersection of a cube with a closed affine subspace of finite codimension. The techniques used are the classical Laplace Transform and saddlepoint method for asymptotics. Applications to spectral reflectance estimation in colorimetry are presented.

Related articles: Most relevant | Search more
arXiv:0712.1302 [math.FA] (Published 2007-12-10)
Spectrum of the product of Toeplitz matrices with application in probability
arXiv:1507.01431 [math.FA] (Published 2015-07-06)
Estimates on the norm of polynomials and applications
arXiv:0909.1216 [math.FA] (Published 2009-09-07, updated 2010-11-09)
Parrametric Poincare-Perron theorem with applications