arXiv Analytics

Sign in

arXiv:1810.13099 [astro-ph.HE]AbstractReferencesReviewsResources

Predicting Stellar-Mass Black Hole X-ray Spectra from Simulations

Brooks E. Kinch, Jeremy D. Schnittman, Timothy R. Kallman, Julian H. Krolik

Published 2018-10-31Version 1

We describe results from a new technique for the prediction of complete, self-consistent X-ray spectra from three-dimensional General Relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows. Density and cooling rate data from a HARM3D GRMHD simulation are processed by both an improved version of the Monte Carlo radiation transport code PANDURATA (in the corona) and the Feautrier solver PTRANSX (in the disk), with XSTAR subroutines. The codes are run in a sequential but iterative fashion to achieve globally energy-conserving and self-consistent radiation fields, temperature maps, and photoionization equilibria. The output is the X-ray spectrum as seen by a distant observer. For the example cases we consider here---a non-rotating $10 M_\odot$ black hole with solar abundances, accreting at 0.01, 0.03, 0.1, or 0.3 Eddington---we find spectra resembling actual observations of stellar-mass black holes in the soft or steep power-law state: broad thermal peaks (at 1-3 keV), steep power-laws extending to high energy ($\Gamma$ = 2.7-4.5), and prominent, asymmetric Fe K$\alpha$ emission lines with equivalent widths in the range 40-400 eV (larger EW at lower accretion rates). By starting with simulation data, we obviate the need for parameterized descriptions of the accretion flow geometry---no a priori specification of the corona's shape or flux, or the disk temperature or density, etc., are needed. Instead, we apply the relevant physical principles to simulation output using appropriate numerical techniques; this procedure allows us to calculate inclination-dependent spectra after choosing only a small number of physically meaningful parameters: black hole mass and spin, accretion rate, and elemental abundances.

Related articles: Most relevant | Search more
arXiv:0907.3114 [astro-ph.HE] (Published 2009-07-17)
The absorption-dominated model for the X-ray spectra of type I active galaxies: MCG-6-30-15
arXiv:1607.07125 [astro-ph.HE] (Published 2016-07-25)
No Signatures of Black-Hole Spin in the X-ray Spectrum of the Seyfert 1 Galaxy Fairall 9
arXiv:1410.7769 [astro-ph.HE] (Published 2014-10-28)
Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence