arXiv Analytics

Sign in

arXiv:1810.05834 [math.AP]AbstractReferencesReviewsResources

Local uniqueness for an inverse boundary value problem with partial data

Bastian Harrach, Marcel Ullrich

Published 2018-10-13Version 1

In dimension $n\geq 3$, we prove a local uniqueness result for the potentials $q$ of the Schr\"odinger equation $-\Delta u+qu=0$ from partial boundary data. More precisely, we show that potentials $q_1,q_2\in L^\infty$ with positive essential infima can be distinguished by local boundary data if there is a neighborhood of a boundary part where $q_1\geq q_2$ and $q_1\not\equiv q_2$.

Journal: Proc. Amer. Math. Soc. 145 (3), 1087-1095, 2017
Categories: math.AP
Subjects: 35J10, 35R30
Related articles: Most relevant | Search more
arXiv:1806.08772 [math.AP] (Published 2018-06-22)
Inverse problems for Maxwell's equations in a slab with partial boundary data
arXiv:2108.11522 [math.AP] (Published 2021-08-26)
Inverse boundary value problems for polyharmonic operators with non-smooth coefficients
arXiv:2307.00380 [math.AP] (Published 2023-07-01)
Remarks on the paper: Ikehata, M., Extraction formulae for an inverse boundary value problem for the equation $\nabla\cdot(σ-iωε)\nabla u=0$, Inverse Problems, 18(2002), 1281-1290