arXiv:1810.05696 [math.AP]AbstractReferencesReviewsResources
The $\infty$-eigenvalue problem with a sign-changing weight
Uriel Kaufmann, Julio D. Rossi, Joana Terra
Published 2018-10-12Version 1
Let $\Omega\subset\mathbb{R}^{n}$ be a smooth bounded domain and $m\in C(\overline{\Omega})$ be a sign-changing weight function. For $1<p<\infty$, consider the eigenvalue problem $$ \left\{ \begin{array} [c]{ll} -\Delta_{p}u=\lambda m(x)|u|^{p-2}u & \text{in }\Omega,\\ u=0 & \text{on }\partial\Omega, \end{array} \right. $$ where $\Delta_{p}u$ is the usual $p$-Laplacian. Our purpose in this article is to study the limit as $p\rightarrow\infty$ for the eigenvalues $\lambda _{k,p}\left( m\right) $ of the aforementioned problem. In addition, we describe the limit of some normalized associated eigenfunctions when $k=1$.
Categories: math.AP
Related articles: Most relevant | Search more
An Eigenvalue problem for the Infinity-Laplacian
arXiv:2004.02048 [math.AP] (Published 2020-04-04)
Remarks on Eigenvalue Problems for Fractional $p(\cdot)$-Laplacian
arXiv:1703.03648 [math.AP] (Published 2017-03-10)
The Eigenvalue Problem for the $\infty$-Bilaplacian