arXiv Analytics

Sign in

arXiv:1810.01134 [math.CA]AbstractReferencesReviewsResources

Asymptotics of a ${}_3F_2$ hypergeometric function with four large parameters

R B Paris

Published 2018-10-02Version 1

We consider the asymptotic behaviour of the generalised hypergeometric function \[{}_3F_2\bl(\!\!\begin{array}{c} 1, (1+t)k/2, (1+t)k/2+1/2\\tk+1, k+1\end{array}\!\!; x\br),\qquad 0<x,t\leq 1\] as the parameter $k\to+\infty$. Numerical results illustrating the accuracy of the resulting expansion are given.

Comments: 7 pages, 0 figures
Categories: math.CA
Subjects: 33C05, 34E05, 41A60
Related articles: Most relevant | Search more
arXiv:2004.01945 [math.CA] (Published 2020-04-04)
Uniform asymptotics of a Gauss hypergeometric function with two large parameters, V
arXiv:1809.08794 [math.CA] (Published 2018-09-24)
Asymptotics of a Gauss hypergeometric function with large parameters, IV: A uniform expansion
arXiv:1609.08365 [math.CA] (Published 2016-09-27)
Asymptotics of a Gauss hypergeometric function with large parameters, III: Application to the Legendre functions of large imaginary order and real degree