arXiv:1809.08515 [math.DS]AbstractReferencesReviewsResources
Equidistribution of expanding translates of curves and Diophantine approximation on matrices
Published 2018-09-23Version 1
We study the general problem of equidistribution of expanding translates of an analytic curve by an algebraic diagonal flow on the homogeneous space $G/\Gamma$ of a semisimple algebraic group $G$. We define two families of algebraic subvarieties of the associated partial flag variety $G/P$, which give the obstructions to non-divergence and equidistribution. We apply this to prove that for Lebesgue almost every point on an analytic curve in the space of $m\times n$ real matrices whose image is not contained in any rational subvariety coming from these two families, the Dirichlet's theorem on simutaneous Diophantine approximation cannot be improved. The proof combines geometric invariant theory, Ratner's theorem on measure rigidity for unipotent flows, and linearization technique.