arXiv Analytics

Sign in

arXiv:1809.06821 [math.AP]AbstractReferencesReviewsResources

Fully nonlinear integro-differential equations with deforming kernels

Luis Caffarelli, Rafayel Teymurazyan, José Miguel Urbano

Published 2018-09-18Version 1

We develop a regularity theory for integro-differential equations with kernels deforming in space like sections of a convex solution of a Monge-Amp\`{e}re equation. We prove an ABP estimate and a Harnack inequality and derive H\"{o}lder and $C^{1,\alpha}$ regularity results for solutions.

Related articles: Most relevant | Search more
arXiv:0902.4030 [math.AP] (Published 2009-02-23, updated 2010-03-30)
Regularity results for nonlocal equations by approximation
arXiv:0804.0905 [math.AP] (Published 2008-04-06)
Regularity results for the Primitive Equations of the ocean
arXiv:1404.1197 [math.AP] (Published 2014-04-04, updated 2014-12-10)
Boundary regularity for fully nonlinear integro-differential equations