arXiv:1809.06816 [math.GN]AbstractReferencesReviewsResources
Countable Dense Homogeneity and the Double Arrow Space
Published 2018-09-18Version 1
Let $\mathbb{A}$ denote the Alexandroff-Urysohn double arrow space. We prove the following results: (a) $\mathbb{A}\times{}^\omega{2}$ is not countable dense homogeneous; (b) ${}^{\omega}{\mathbb{A}}$ is not countable dense homogeneous; (c) $\mathbb{A}$ has exactly $\mathfrak{c}$ types of countable dense subsets. These results answer questions by Arhangel'ski\u\i, Hru\v{s}\'ak and van Mill.
Journal: Top. Applications 160, 10, (2013), 1123-1128
Categories: math.GN
Keywords: countable dense homogeneity, alexandroff-urysohn double arrow space, results answer questions, countable dense homogeneous, van mill
Tags: journal article
Related articles: Most relevant | Search more
Countable dense homogeneity in powers of zero-dimensional definable spaces
arXiv:1904.04906 [math.GN] (Published 2019-04-09)
Countable dense homogeneity of function spaces
arXiv:1809.06819 [math.GN] (Published 2018-09-18)
Countable dense homogeneity and $λ$-sets