arXiv Analytics

Sign in

arXiv:1809.03959 [math.GT]AbstractReferencesReviewsResources

Taut Foliations, Positive 3-Braids, and the L-Space Conjecture

Siddhi Krishna

Published 2018-09-11Version 1

We construct taut foliations in every closed 3-manifold obtained by $r$-framed Dehn surgery along a positive 3-braid knot $K$ in $S^3$, where $r < 2g(K)-1$ and $g(K)$ denotes the Seifert genus of $K$. This confirms a prediction of the L-space Conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot $P(-2,3,7)$, and indeed along every pretzel knot $P(-2,3,q)$, for $q$ a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hyperbolic L-space knots. Additionally, we construct taut foliations in every closed 3-manifold obtained by $r$-framed Dehn surgery along a positive 1-bridge braid in $S^3$, where $r <g(K)$.

Related articles: Most relevant | Search more
arXiv:2106.10736 [math.GT] (Published 2021-06-20)
Circular orderability of 3-manifold groups
arXiv:2106.15582 [math.GT] (Published 2021-06-29)
Non-left-orderability of cyclic branched covers of pretzel knots $P(3,-3,-2k-1)$
arXiv:1803.00076 [math.GT] (Published 2018-02-28)
Left-orderablity for surgeries on $(-2,3,2s+1)$-pretzel knots