arXiv Analytics

Sign in

arXiv:1809.03475 [quant-ph]AbstractReferencesReviewsResources

Operational foundations to complementarity and uncertainty relations

Debashis Saha, Michał Oszmaniec, Łukasz Czekaj, Michał Horodecki, Ryszard Horodecki

Published 2018-09-10Version 1

The so-called preparation uncertainty can be understood in purely operational terms. Namely, it occurs when for some pair of observables, there is no preparation, for which thier both exhibit deterministic statistics. However, the right-hand side of uncertainty relation is generally not operational as it depends on the quantum formalism. Also, while joint non-measurability of observables is an operational notion, the complementarity in Bohr sense (i.e. excess of information needed to describe the system) has not yet been expressed in purely operational terms. In this paper we propose a solution to these problems, by introducing an operational definition for complementarity, and further postulating uncertainty as a necessary price for complementarity in physical theories. In other words, we propose to put the (operational) complementarity as the right hand side of uncertainty relation. Concretly, we first identify two different notions of uncertainty and complementarity for which the above principle holds in quantum mechanics. We also introduce postulates for the general measures of uncertainty and complementarity. In order to define quantifiers of complementarity we first turn to the simpler notion of independence that is defined solely in terms of statistics two observables. We also use our framework to define new complementarity indicators based on (i) performance of random access codes, (ii) geometrical properties of the body of observed statistics, and (iii) variation of information. We then show that they can be used state uncertainty relations. Moreover, we show that non-signaling and uncertainty relation expressed by complementarity of type (ii) leads to the Tsirelson bound for CHSH inequality. Lastly, we show that a variant of Information Causality called Information Content Principle, can be interpreted as uncertainty relation in the above sense.

Comments: 21 pages, 12 Figures, Comments and suggestions are welcome
Categories: quant-ph
Related articles: Most relevant | Search more
arXiv:quant-ph/0112065 (Published 2001-12-11)
Demonstration of the Complementarity of One- and Two-Photon Interference
arXiv:quant-ph/0510145 (Published 2005-10-18)
Complementarity and additivity for depolarizing channels
arXiv:2003.01563 [quant-ph] (Published 2020-03-03)
Complementarity between one- and two-body visibilities