arXiv Analytics

Sign in

arXiv:1809.02273 [math.LO]AbstractReferencesReviewsResources

Expansions of the real field by discrete subgroups of Gl$_n(\mathbb{C})$

Philipp Hieronymi, Erik Walsberg, Samantha Xu

Published 2018-09-07Version 1

Let $\Gamma$ be an infinite discrete subgroup of Gl$_n(\mathbb{C})$. Then either $(\mathbb{R}, <, +, \cdot, \Gamma)$ is interdefinable with $(\mathbb{R}, <, +, \cdot, \lambda^\mathbb{Z})$ for some $\lambda \in \mathbb{R}$, or $(\mathbb{R}, < , +, \cdot, \Gamma)$ defines the set of integers. When $\Gamma$ is not virtually abelian, the second case holds.

Related articles: Most relevant | Search more
arXiv:1105.2946 [math.LO] (Published 2011-05-15, updated 2011-07-11)
A dichotomy for expansions of the real field
arXiv:1812.05547 [math.LO] (Published 2018-12-13)
Expansions of the real field by canonical products
arXiv:1812.10151 [math.LO] (Published 2018-12-25)
Expansions of real closed fields which introduce no new smooth functions