arXiv:1809.00087 [math.AG]AbstractReferencesReviewsResources
The Steinberg relation in the stable motivic homotopy theory over a base
Published 2018-08-31Version 1
We prove the Steinberg relation in the sections of the sheaf $\underline{\pi}^{2,2}$ in $\mathbf{SH}(S)$ over an arbitrary base scheme $S$. Namely we prove that the class of the morphism $$(1-x,x)\colon \mathbf (A^1-\{0,1\})\times S\to \mathbf G_m\times\mathbf G_m/(1\times\mathbf G_m\cup \mathbf G_m\times 1)$$ is trivial in the stable motivic homotopy category $$[(1-x,x)]=0\in [A^1_S-\{0_S,1_S\},\mathbf G_m^{\wedge 2}]_{\mathbf{SH}(S)}.$$
Categories: math.AG
Related articles: Most relevant | Search more
A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula
arXiv:2104.03222 [math.AG] (Published 2021-04-07)
Stable motivic homotopy theory at infinity
arXiv:0805.2140 [math.AG] (Published 2008-05-14)
On the adjoint quotient of Chevalley groups over arbitrary base schemes