arXiv Analytics

Sign in

arXiv:1808.10675 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Crystallization in the hexagonal lattice for ionic dimers

Manuel Friedrich, Leonard Kreutz

Published 2018-08-31Version 1

We consider finite discrete systems consisting of two different atomic types and investigate ground-state configurations for configurational energies featuring two-body short- ranged particle interactions. The atomic potentials favor some reference distance between different atomic types and include repulsive terms for atoms of the same type, which are typical assumptions in models for ionic dimers. Our goal is to show a two-dimensional crystallization result. More precisely, we give conditions in order to prove that energy minimizers are connected subsets of the hexagonal lattice where the two atomic types are alternately arranged in the crystal lattice. We also provide explicit formulas for the ground-state energy. Finally, we characterize the net charge, i.e., the difference of the number of the two atomic types. Analyzing the deviation of configurations from the hexagonal Wulff shape, we prove that for ground states consisting of n particles the net charge is at most of order O(n^{1/4}) where the scaling is sharp.

Related articles: Most relevant | Search more
arXiv:cond-mat/9908121 (Published 1999-08-09)
Peierls substitution in the energy dispersion of a hexagonal lattice
arXiv:1009.3812 [cond-mat.mes-hall] (Published 2010-09-20, updated 2010-10-23)
Dynamical current-current correlation of the hexagonal lattice and graphene
arXiv:2108.09511 [cond-mat.mes-hall] (Published 2021-08-21)
Second Order Topological Insulator State in Hexagonal Lattices and its Abundant Material Candidates